top of page

Straining the memory: Prototype strain engineered materials are the future of data storage

  • Writer: Marine Le Bouar
    Marine Le Bouar
  • Sep 20, 2017
  • 2 min read


A comparison of the electrical switching current and switching times for the strained superlattices interfacial phase change memory with other state-of-the-art phase change memory materials. @ Zhou et al.

Researchers from the Singapore University of Technology and Design (SUTD) and Shanghai Institute of Microsystems and Information Technology have nano-engineered a superlattice data storage material. Data is recorded at the interfaces of the superlattice layers. When the atoms at the interface are disordered, the material has a high electrical resistance while the ordered interface has a low electrical resistance.

Since only the interface switches, a subset of layers within the material can remain unchanged and crystalline. This means that the interface can be engineered by the non-switching layers - the entire structure need not switch into a disordered state. This makes the superlattice very different to unstructured phase change memory alloys, such as the Ge2Sb2Te5 alloy.

The authors showed in a paper published in Nano Futures that fast switching in these nanostructured materials is due to avalanche atomic switching at the interface. The first atom that switches requires a large amount of energy, but subsequent atoms require less energy. As more atoms switch, the energy required for subsequent atoms to switch is lowered. This leads to an exponential increase in the switching probability with the number of atoms switching.

Zhou et al showed that the energy for the first atom to switch can be engineered by straining the layer interfaces. The research team created prototype memory devices, which exploit this effect that outperformed state-of-the-art phase change memory devices. The switching voltage, current, and switching time are substantially reduced while the electrical resistance changes by a factor of 500. Thus these prototype devices are faster and more efficient than current competing technologies.

One of the members of the research team, Assistant Professor Robert Simpson, said: "The superlattices devices are remarkably energy efficient. We foresee this technology impacting new 3D memory architectures, such as Intel's 3D x-point. We are now building on the success of these data storage materials by optimising similar phase change materials for switchable nano photonics applications."

Avalanche atomic switching in strain engineered Sb2Te3–GeTe interfacial phase-change memory cells Xilin Zhou, Jitendra K Behera, Shilong Lv, Liangcai Wu, Zhitang Song and Robert E Simpson http://dx.doi.org/10.1088/2399-1984/aa8434

 
 
 

Comments


FREE LISTING

Get Found by Gobal Nanotech Buyer

Join 2,000+ companies in our directory. Claim your profile in 2 minutes.

Reach 220k+ professionals

Instant credibility boost

Start free, upgrade anytime

List your Nanotech Products

Showcase your innovations to our 220k+ network of industry professionals and 14k newsletter subscribers

Stay Ahead in Nanotech

Monthly insights, breakthroughs, and opportunities delivered to 14,000+ industry professionals.

Thank you registering!

More News

Join the Global Nanotechnology Network

Connect with 220k+ nanotech professionals across our network and grow your business visibility

FOR COMPANIES

  • Free basic profile

  • Showcase your products

  • Connect with global buyers

  • Premium options available

STAY INFORMED

  • Monthly industry insights

  • Latest breakthroughs & trends

  • New products & innovations

  • Exclusive opportunities

bottom of page