top of page

ARTICLE

Fusion squeeze


This simulation of a fusion plasma calculation result shows the interaction of two counter-streaming beams of super-heated gas. @ David L. Green/Oak Ridge National Laboratory, U.S. Dept. of Energy

The prospect of simulating a fusion plasma is a step closer to reality thanks to a new computational tool developed by scientists in fusion physics, computer science and mathematics at Oak Ridge National Laboratory.


Harnessing fusion power on Earth requires strong magnetic fields to hold and squeeze a super-heated gas, and the large scale experiments capable of such extreme conditions can take decades to build.


Through simulation, a team led by ORNL's David Green hopes to perform virtual investigations of how fusion devices behave using high-performance computing.


"The mathematics underlying a fusion plasma are so complex that traditional approaches test the limits of even today's largest supercomputers," Green said. The team has tested a new approach on ORNL's Summit supercomputer and they expect that its combination with ORNL's upcoming exascale Frontier supercomputer will make a virtual fusion device possible.


Machine learning for analysis of atomic spectral data

M Cianciosa, KJH Law, EH Martin, DL Green

Journal of Quantitative Spectroscopy and Radiative (2020)


Contact information:

David L Green

Phone: 865.241.2752


Oak Ridge National Laboratory (ORNL), U.S. Dept. of Energy

Comments


  • RSS

Subscribe to our monthly Newsletter

Get the nanotech news that matters directly in your inbox.

Thank you registering!

Follow us on social media

  • LinkedIn
  • X
  • Youtube
  • Tumblr
  • Facebook

May 19, 2024

Osaka, Japan

13th Annual Congress of Nano Science and Technology (Nano S&T-2024)

May 28, 2024

Kuala Lumpur, Malaysia

SEMICON SEA 2024

Jun 3, 2024

Tokyo, Japan

Japan Energy Summit & Exhibition

bottom of page