park_nano_research_grant.jpg

Graphene-based actuator swarm enables programmable deformation


(a) Schematic illustration of the fabrication of patterned SU-8/GO bilayer film using UV lithography. (b) The paper model of patterned SU-8/GO ribbon and its predictable moisture-responsive deformation under humidity actuation. @ Science China Press

Actuators that can convert various environmental stimuli to mechanical works have revealed great potential for developing smart devices such as soft robots, micro-electromechanical systems (MEMS), and automatic Lab-on-a-Chip systems. Generally, bilayer structures are widely used for design and fabrication of stimuli responsive actuators. In the past decade, to pursue fast and large-scale deformation, great efforts have been devoted to the development of novel smart materials. To date, various stimuli response materials/structures have been successfully developed and employed for bimorph actuators. Recently, graphene and graphene oxide (GO) that possess a series of outstanding physical/chemical properties have emerged as a new type of smart material for actuator design. Various graphene-based bimorph actuators have been successfully reported. However, these actuators are only capable of simple deformation, such as bending. To the best of our knowledge, less attention has been paid to the refined control of their deformation. Despite some previous works have reported that the bending direction can be controlled by the patterned constrained layer, their deformation is passively restricted due to the anisotropic mechanical resistance. Currently, the development of bimorph actuators that enable active and programmable deformation remains a challenging task. The researchers present a self-healing graphene actuator swarm that enables programmable 3D deformation by integrating SU-8 pattern arrays with GO. Unlike previously published works, the actuator swarm can realize active and programmable deformation under moisture actuation. In this work, the SU-8 pattern arrays can be fabricated into any desired structures, in which an individual SU-8 pattern can be considered as an inert layer. In combination with the bottom GO layer, each SU-8 structure can form an individual bimorph actuator and deform actively under stimulation. In this regard, these SU-8/GO bilayer arrays can be considered as a swarm of actuators (actuator-1, actuator-2, and actuator-n). Under external stimulation, each actuator deforms individually, and the deformation of the entire structure is the collective coupling and coordination of the actuator swarm. Therefore, by controlling the size, shape and orientation of the SU-8 patterns, more complex deformations can be programmed. This work proposed a new way to program the deformation of bilayer actuators, expanding the capabilities of existing bimorph actuators for applications in various smart devices. Programmable deformation of patterned bimorph actuator swarm Jia-Nan Ma, Yong-Lai Zhang, Dong-Dong Han, Jiang-Wei Mao, Zhao-Di Chen, and Hong-Bo Sun National Science Review (2020) DOI: 10.1093/nsr/nwz219 Science News Press


Learn more about the Nanotechnology World Association (NWA):

Who we are | Founding Members | Board of Directors | Memberships |

News | Careers | Events

 

STAY CURRENT WITH THE NWA NEWSLETTER DELIVERED TO YOUR INBOX.

FOUNDING MEMBERS

Australian researchers record world's fastest internet speed from a single optical chip

NIST researchers boost microwave signal stability a hundredfold

Capturing the coordinated dance between electrons and nuclei in a light-excited molecule

Novel device that harnesses shadows to generate electricity

Untangling a key step in photosynthetic oxygen production

Nature unveiling herself before science

Machine-learning tool could help develop tougher materials

[PALD] SUMMIT is a live digital conference on surface engineering via Particle Atomic Layer Deposition

 

When:     MAY 21st 2020

Where:    ONLINE

Cost:       FREE

PaldSUMMITLogo.jpg