top of page


Physicists shed new light on how liquids behave with other materials

A movie allows a view of the rich interfacial configurational structure that occurs near critical drying @ PNAS October 14, 2019 DOI: 10.1073/pnas.1913587116

Their findings, published in the Proceedings of the National Academy of Sciences (PNAS), challenge the accepted wisdom on wetting and drying phase behaviour.

The authors provide a firm conceptual framework for tailoring the properties of new materials, including finding super-repellant substrates, such as expelling water from windscreens, as well as understanding hydrophobic interactions at the length scale of biomolecules.

When a liquid such as water is repelled from a solid substrate, the drop created exhibits a large contact angle. This is known as a hydrophobic state, or superhydrophobic if the contact angle is very large, so that the drop forms a near spherical shape.

By contrast, if the substrate attracts the liquid sufficiently strongly - in other words, a hydrophilic substrate - this creates a small contact angle and the drop spreads over the surface.

Whether a surface is hydrophobic or hydrophilic is determined by the degree of molecular attraction between the substrate and the liquid.

Controlling the attraction is key to the wettability of substrates, which determines how many physical and biological systems function. For instance, plant leaves are often hydrophobic, allowing them to remain dry during rain so that gas exchange can occur through their pores. However, liquids such as paints, inks and lubricants are required to spread out to coat or 'wet' surfaces.

Building on early insights gained by former Bristol PhD student Dr. Maria Stewart, Professor Bob Evans and Professor Nigel Wilding from the School of Physics applied a number of theoretical and simulation techniques to realistic fluid models in order to study the properties of hydrophobic and hydrophilic substrates.

They discovered rich and unexpected behaviour such as divergent density fluctuations associated with the phenomenon of 'critical drying' at a superhydrophobic substrate.

Professor Evans said: "Clarifying the factors that control the contact angle of a liquid on a solid substrate is a long-standing scientific problem pertinent across physics, chemistry and materials science. Progress has been hampered by the lack of a comprehensive and unified understanding of the physics of wetting and drying phase transitions. Our results show the character of these transitions depends sensitively on both the range of fluid-fluid and substrate-fluid interactions and the temperature.

Professor Wilding added: "Our work has uncovered previously unrecognised classes of surface phase diagrams to which most experimental and simulation studies of liquids in contact with a substrate belong. A particularly interesting feature relates to water near superhydrophobic substrates where one observes the phenomenon of `critical drying' as θ ?180°. This is signalled by divergent density fluctuations which lead to rich structural properties including fractal arrangements of vapor bubbles near the substrate."

A unified description of hydrophilic and superhydrophobic surfaces in terms of the wetting and drying transitions of liquids

Robert Evans, Maria Stewart and Nigel Wilding

Proceedings of the National Academy of Sciences (PNAS) first published October 14, 2019

Contact information:

Professor of Physics (statistical physics & condensed matter theory) at Bristol

Phone: +44 (0) 117 928 8703

Professor of Physics (statistical mechanics of soft matter) at Bristol

Phone: +44 (0) 117 928 8761

University of Bristol


  • RSS

Subscribe to our monthly Newsletter

Get the nanotech news that matters directly in your inbox.

Thank you registering!

Follow us on social media

  • LinkedIn
  • X
  • Youtube
  • Tumblr
  • Facebook

May 19, 2024

Osaka, Japan

13th Annual Congress of Nano Science and Technology (Nano S&T-2024)

May 28, 2024

Kuala Lumpur, Malaysia


Jun 3, 2024

Tokyo, Japan

Japan Energy Summit & Exhibition

bottom of page