park_nano_research_grant.jpg

Light tying knots in liquid crystal droplets

​​


Nathalie Katsonis and her colleagues at UT Research Institute MESA+ have recently shown that light can create new structures in the form of liquid crystal droplets containing photosensitive molecular engines.

To date, these metastable structures had only be predicted theoretically, but had not yet been observed. These structures have various optical characteristics, and they are photo-switchable thanks to molecular engines, which marks a first step towards new forms of information storage.

The research is financed by a VIDI grant of the Netherlands Organization for Chemical Scientific Research (NWO) and was recently published in the scientific magazine Nature Communications.

Topological States

Topology is a universal concept which is used to describe matter. It can also be applied to our everyday lives: for instance, a cup without a handle is topologically equal to a ball, whereas a cup with a handle is topologically equal to a donut.

The possibility to check the topology of a matter is a first step towards new strategies in designing functional materials. It has recently been predicted through maths that liquid crystals can take a great variety of topological shapes, referred to as knotted loops orlinked loops. In the article published in Nature Communications, Katsonis and her colleagues of the Biomolecular NanoTechnology departmentare showing how topological knots or links can be created in the form of liquid crystal droplets. The number and geometry of these topological structures can be checked, since the photosensitive liquid crystals also have molecular engines. Under the influence of light, these molecules change between different isomers in different spiral shapes, and in that way the spiral twist, the chirality and the organization of the materials can be checked on a molecular level. These complex metastable structures can possibly be used for the development of optical media storage products with very large capacities.

UT Research Institute MESA


 

STAY CURRENT WITH THE NWA NEWSLETTER DELIVERED TO YOUR INBOX.

FOUNDING MEMBERS

Australian researchers record world's fastest internet speed from a single optical chip

NIST researchers boost microwave signal stability a hundredfold

Capturing the coordinated dance between electrons and nuclei in a light-excited molecule

Novel device that harnesses shadows to generate electricity

Untangling a key step in photosynthetic oxygen production

Nature unveiling herself before science

Machine-learning tool could help develop tougher materials

[PALD] SUMMIT is a live digital conference on surface engineering via Particle Atomic Layer Deposition

 

When:     MAY 21st 2020

Where:    ONLINE

Cost:       FREE

PaldSUMMITLogo.jpg