Energy-efficient power electronics: Gallium oxide power transistors with record values


Gallium oxide chip with transistor structures and for measurement purposes, processed at FBH via projection lithography. @ FBH/schurian.com

Powerful electronic components are indispensable for future communications, for the digital transformation of society and for artificial intelligence applications. On a footprint as small as possible, they should offer low energy consumption and achieve ever higher power densities, thus working more efficiently. This is where conventional devices reach their limits. Scientists all over the world are therefore investigating new materials and components that can meet these requirements. The Ferdinand-Braun-Institut (FBH) has now achieved a breakthrough with transistors based on gallium oxide (beta-Ga2O3).


The newly developed beta-Ga2O3-MOSFETs (metal-oxide-semiconductor field-effect transistor) provide a high breakdown voltage combined with high current conductivity. With a breakdown voltage of 1.8 kilovolts and a record power figure of merit of 155 megawatts per square centimeter, they achieve unique performance figures close to the theoretical material limit of gallium oxide. At the same time, the breakdown field strengths achieved are significantly higher than those of established wide bandgap semiconductors such as silicon carbide or gallium nitride.


In order to achieve these improvements, the FBH team tackled the layer structure and gate topology. The basis was provided by substrates from the Leibniz Institute for Crystal Growth with an optimized epitaxial layer structure. As a result, the defect density could be reduced and electrical properties improved. This leads to lower on-state resistances. The gate is the central 'switching point' of field effect transistors, controlled by the gate-source voltage. Its topology has been further optimized, allowing to reduce high field strengths at the gate edge. This, in turn, leads to higher breakdown voltages. The detailed results were published online on August 26, 2019 in the IEEE Electron Device Letters September issue.


Lateral 1.8 kV β -Ga2O3 MOSFET With 155 MW/cm2 Power Figure of Merit

Kornelius Tetzner, Eldad Bahat Treidel, Oliver Hilt, Andreas Popp, Saud Bin Anooz, Gunter Wagner, Andreas Thies, Karina Ickert, Hassan Gargouri, Joachim Wurfl

IEEE Electron Device Letters, 2019; 40 (9): 1503

DOI: 10.1109/LED.2019.2930189


Forschungsverbund Berlin

 

STAY CURRENT WITH THE NWA NEWSLETTER DELIVERED TO YOUR INBOX.

FOUNDING MEMBERS

Lighting the way to selective membrane imaging

Novel magnetic spray transforms objects into millirobots for biomedical applications

A DNA-based nanogel for targeted chemotherapy

A pressure sensor at your fingertips

A filter for environmental remediation

Predicting forces between oddly shaped nanoparticles

One-way street for electrons