top of page

ARTICLE

Finding high-Q resonant modes in a dielectric nanocavity


High-Q and low-Q Mie modes of single dielectric 2D nanowire (left) and finite 3D nanoparticle (right). @ L. Huang et al.

Optical resonators provide the foundation of modern photonics and optics. Thanks to its extreme energy confinement, the high-Q-factor optical resonator optimizes light-matter interaction and photonic device performance by enabling low-threshold laser and enhanced nonlinear harmonic generation.


Two typical structures, the photonic crystal cavity and the whispering gallery cavity, are frequently used to obtain extremely high-Q factors. However, these structures may require dimensions that are comparable to--or several times larger than--the operating wavelength. Whether there is a general way to find out all high-Q modes in a dielectric nanocavity of arbitrary shape has been a fundamental question.


A research team from University of New South Wales Canberra, The Australian National University, and Nottingham Trent University recently developed a robust recipe for finding high-Q modes in a single dielectric nanocavity, as reported in Advanced Photonics.


Subwavelength high-index dielectric nanostructure


Subwavelength high-index dielectric nanostructures are a promising platform for realizing CMOS-compatible nanophotonics. These nanostructures are based on two main factors: support of electric and magnetic Mie-type resonances and reduced dissipation. A single dielectric nanoresonator (e.g., a disk with finite thickness) supports the high-Q mode (also known as the quasi-bound state in the continuum). By exploring the quasi-bound state in the continuum, Huang et al. found a way to easily find many high-Q modes, using Mie mode engineering to cause a hybridization of paired leaky modes, resulting in avoided crossing of high- and low-Q modes.


Robust, pair-wise approach


Interestingly, both the avoided crossing, and crossing of eigenfrequencies for the paired modes, led to the discovery of high-Q modes, representing a simple yet robust way of finding high-Q modes. The team experimentally confirmed high-Q modes in a single silicon rectangular nanowire. The measured Q-factor was as high as 380 and 294 for TE(3,5) and TM(3,5), respectively (see figure). The authors attribute the resultant high Q-factors to the suppression of radiation in the limited leaky channels or minimized radiation in momentum space.


According to senior author Andrey E. Miroshnichenko of the School of Engineering and Information Technology at University of New South Wales, "This work presents a straightforward method of finding out high-Q modes in a single dielectric nanocavity, which may find applications in integrated photonic circuits, such as ultra-low-threshold laser for on-chip light sources, strong coupling for polariton lasing, and enhanced second or third harmonic generations for night vision." Reference Pushing the limit of high-Q mode of a single dielectric nanocavity

Lujun Huang, Lei Xu, Mohsen Rahmani, Dragomir N. Neshev, Andrey E. Miroshnichenko https://doi.org/10.1117/1.AP.3.1.016004 Contact Andrey E. Miroshnichenko

Professor University of New South Wales

+61-02-6268-9571

  • RSS

Subscribe to our monthly Newsletter

Get the nanotech news that matters directly in your inbox.

Thank you registering!

Follow us on social media

  • LinkedIn
  • X
  • Youtube
  • Tumblr
  • Facebook

Jun 29, 2024

Thessaloniki, Greece

NANOTEXNOLOGY 2024

Jun 30, 2024

Melbourne VIC, Australia

29th Opto-Electronics and Communications Conference 2024 (OECC2024)

Jul 1, 2024

Kuala Lumpur, Malaysia

ICMRN-2024

bottom of page