Spiraling Beams Differentiate Antiferromagnetic States
- Marine Le Bouar

- May 2, 2023
- 3 min read

Using spiraling x-ray beams generated at the Advanced Light Source (ALS), researchers differentiated between energetically equivalent (“degenerate”) states in an antiferromagnetic lattice.
The work shows the potential of these beams to probe properties that would otherwise be inaccessible, to better understand phenomena of fundamental interest and for applications such as spintronics.
X-ray beams with a twist
X-ray experiments are an important tool for understanding the electronic and magnetic properties of materials. The polarization (i.e., the direction of the oscillating electromagnetic field) of x-rays is often used to probe anisotropy or chirality. A property of x-rays that has yet to be utilized in experiments is their orbital angular momentum (OAM). X-rays with OAM have an azimuthally varying phase, which means the phase twists as the x-rays propagate. This leads to a gradient in the electromagnetic field, which could cause the twisted photons to have different interactions with materials.
X-rays with OAM have a helicity ℓ = ±1, which corresponds to whether the phase is twisting in the clockwise or counterclockwise direction. Similar to how polarization is used in experiments, OAM can be used to probe chirality and magnetism, and potentially more exotic properties like topology. It could also improve the resolution of x-ray imaging and microscopy techniques. In this work, researchers showed how helicity-dependent effects in resonant x-ray scattering (RXS) can be used to investigate the magnetic configuration of a lattice.
Creating twisted light
One way to create x-ray beams with OAM is by scattering from a topological defect. Here, a square lattice of permalloy nanomagnets was synthesized on a silicon substrate. Two extra nanomagnets were inserted into the center to create a topological edge defect.
At ALS Beamline 11.0.1.1, photoemission electron microscopy (PEEM) with x-ray magnetic circular dichroism (XMCD) was used to image the magnetic configuration. The results showed that the nanomagnets order antiferromagnetically, where the direction of magnetization alternates on adjacent nanomagnets.
To investigate what OAM beams can reveal about the antiferromagnetic lattice, RXS experiments were performed with circularly polarized light at ALS Beamline 7.0.1.1 (COSMIC Scattering). Scattering from the nanomagnets created beams with both positive and negative OAM helicities, and circular dichroism was used to compare beams of opposite helicity at distinct antiferromagnetic peaks.

The researchers found that the circular dichroism has a distinct pattern, which is inverted for beams of opposite helicity. Furthermore, the antiferromagnetic lattice forms in one of two degenerate ground states, and the helicity-dependent circular dichroism can be used to distinguish between them.
Since the two ground states are degenerate, they should form with equal probability if the antiferromagnet is heated and returned to room temperature. To test this, the nanomagnet array was repeatedly heated to 380 K and cooled. At room temperature, both configurations appeared with about equal probability, as expected for random thermal switching between two degenerate ground states.

This is one of the first experiments to show how the helicity of light can be used to study magnetism. Information about the real-space magnetic configuration of a lattice is usually inaccessible in such experiments, so this work demonstrates the potential of OAM beams for gaining information beyond what is typically obtained in other experiments.
Promising future avenues include using OAM beams in resonant diffraction studies of traditional antiferromagnets, in nanodiffraction studies of domain walls and defects, and, if an OAM beam can be used to measure specific spin sublattices, for directly measuring spin currents.
Reference
Antiferromagnetic real-space configuration probed by dichroism in scattered x-ray beams with orbital angular momentum
Margaret R. McCarter, Ahmad I. U. Saleheen, Arnab Singh, Ryan Tumbleson, Justin S. Woods, Anton S. Tremsin, Andreas Scholl, Lance E. De Long, J. Todd Hastings, Sophie A. Morley, and Sujoy Roy
Phys. Rev. B 107, L060407 – Published 15 February 2023



























Amazing to see how OAM beams can provide information that was previously inaccessible in magnetic lattice studies. If you're as curious as I am about solutions blogs, I strongly suggest taking a look at my latest post. When it comes to exploring the world of Ayurveda, spiritual products, and wellness supplements, shoppers often look for authentic platforms that offer genuine items at fair prices. If you are searching for the Unjha Navratna Rasa price, the sri yantra price, or the Sri Sri Tattva Triphala price, Festmarket ensures that you get authentic products at competitive rates. With a commitment to delivering high-quality items and maintaining transparency in pricing, the company has built a strong reputation among health-conscious customers and spiritual seekers alike.
The application of orbital angular momentum in x-rays is truly groundbreaking. Excited to see how this develops in spintronics. If you're as curious as I am about solutions blogs, I strongly suggest taking a look at my latest post. When it comes to advanced construction solutions, Technopuffsolutions stands as a trusted leader in delivering high-quality insulated products that meet global standards. Whether you are looking for durable infrastructure for an airplane hangar, reliable thermal protection with a puff ceiling, or strong entry solutions such as a puff door, the company ensures that every requirement is met with precision engineering, quality materials, and sustainable practices.
Introduction to Technopuffsolutions’ Expertise
Technopuffsolutions has established itself as a pioneer in insulated construction materials, offering products that deliver…
Fascinating work! Using spiraling x-ray beams to differentiate antiferromagnetic states opens up a whole new window into material science. If you're as curious as I am about solutions blogs, I strongly suggest taking a look at my latest post. In today’s competitive business world, organizations heavily rely on structured systems to optimize efficiency, productivity, and decision-making. One of the most powerful approaches to achieving this is by integrating what is management information system with TPM principles. Both concepts work hand in hand to streamline processes, enhance reliability, and minimize waste. At SugoyaIndia, these frameworks are not just theoretical models—they are applied strategies that empower businesses to reach their maximum potential.
This blog explores how Management Information Systems (MIS) and Total Productive Maintenance…