top of page
NANOARTOGRAPHY COMPETITION

TU Delft researchers discover new ultra strong material for microchip sensors


@ Delft University of Technology

Researchers at Delft University of Technology, led by assistant professor Richard Norte, have unveiled a remarkable new material with potential to impact the world of material science: amorphous silicon carbide (a-SiC). Beyond its exceptional strength, this material demonstrates mechanical properties crucial for vibration isolation on a microchip. Amorphous silicon carbide is therefore particularly suitable for making ultra-sensitive microchip sensors.


The range of potential applications is vast. From ultra-sensitive microchip sensors and advanced solar cells, to pioneering space exploration and DNA sequencing technologies. The advantages of this material's strength combined with its scalability make it exceptionally promising.


Ten medium-sized cars

“To better understand the crucial characteristic of "amorphous", think of most materials as being made up of atoms arranged in a regular pattern, like an intricately built Lego tower,” explains Norte. “These are termed as "crystalline" materials, like for example, a diamond. It has carbon atoms perfectly aligned, contributing to its famed hardness.”


However, amorphous materials are akin to a randomly piled set of Legos, where atoms lack consistent arrangement. But contrary to expectations, this randomisation doesn't result in fragility. In fact, amorphous silicon carbide is a testament to strength emerging from such randomness. The tensile strength of this new material is 10 GigaPascal (GPa). “To grasp what this means, imagine trying to stretch a piece of duct tape until it breaks. Now if you’d want to simulate the tensile stress equivalent to 10 GPa, you'd need to hang about ten medium-sized cars end-to-end off that strip before it breaks,” says Norte.


From micro to macro

And what finally sets this material apart is its scalability. Graphene, a single layer of carbon atoms, is known for its impressive strength but is challenging to produce in large quantities. Diamonds, though immensely strong, are either rare in nature or costly to synthesize. Amorphous silicon carbide, on the other hand, can be produced at wafer scales, offering large sheets of this incredibly robust material.


“With amorphous silicon carbide's emergence, we're poised at the threshold of microchip research brimming with technological possibilities,” concludes Norte. Reference High-Strength Amorphous Silicon Carbide for Nanomechanics

Minxing Xu, Dongil Shin, Paolo M. Sberna, Roald van der Kolk, Andrea Cupertino, Miguel A. Bessa, Richard A. Norte https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202306513


NWA Magazine - Nov2023 - Cover - Final.PNG

Join our mailing list

Thanks for subscribing!

bottom of page