top of page

Photonic crystals bend light as though it were under the influence of gravity

  • Oct 17, 2023
  • 2 min read

A conceptual image of the distorted photonic crystal and photonic crystal. @ K. Kitamura et.al.

A collaborative group of researchers has manipulated the behavior of light as if it were under the influence of gravity. The findings, which were published in the journal Physical Review A on September 28, 2023, have far-reaching implications for the world of optics and materials science, and bear significance for the development of 6G communications.


Albert Einstein's theory of relativity has long established that the trajectory of electromagnetic waves - including light and terahertz electromagnetic waves - can be deflected by gravitational fields. Scientists have recently theoretically predicted that replicating the effects of gravity - i.e., pseudogravity - is possible by deforming crystals in the lower normalized energy (or frequency) region.


"We set out to explore whether lattice distortion in photonic crystals can produce pseudogravity effects," said Professor Kyoko Kitamura from Tohoku University's Graduate School of Engineering.


Photonic crystals possess unique properties that enable scientists to manipulate and control the behavior of light, serving as 'traffic controllers' for light within crystals. They are constructed by periodically arranging two or more different materials with varying abilities to interact with and slow down light in a regular, repeating pattern. Furthermore, pseudogravity effects due to adiabatic changes have been observed in photonic crystals. Kitamura and her colleagues modified photonic crystals by introducing lattice distortion: gradual deformation of the regular spacing of elements, which disrupted the grid-like pattern of protonic crystals. This manipulated the photonic band structure of the crystals, resulting in a curved beam trajectory in-medium - just like a light-ray passing by a massive celestial body such as a black hole.

The experimental set-up and simulation results of the beam trajectory in a DPC. @ K. Kitamura et.al.

Specifically, they employed a silicon distorted photonic crystal with a primal lattice constant of 200 micrometers and terahertz waves. Experiments successfully demonstrated the deflection of these waves.


"Much like gravity bends the trajectory of objects, we came up with a means to bend light within certain materials," adds Kitamura. "Such in-plane beam steering within the terahertz range could be harnessed in 6G communication. Academically, the findings show that photonic crystals could harness gravitational effects, opening new pathways within the field of graviton physics," said Associate Professor Masayuki Fujita from Osaka University.

The experimental results, with the transmission difference between port B and C clearly showing the beam bending in a DPC. @ K. Kitamura et.al.

Reference Deflection of electromagnetic waves by pseudogravity in distorted photonic crystals

Kanji Nanjyo, Yuki Kawamoto, Hitoshi Kitagawa, Daniel Headland, Masayuki Fujita, and Kyoko Kitamura


Comments


FREE LISTING

Get Found by Gobal Nanotech Buyer

Join 2,000+ companies in our directory. Claim your profile in 2 minutes.

Reach 220k+ professionals

Instant credibility boost

Start free, upgrade anytime

List your Nanotech Products

Showcase your innovations to our 220k+ network of industry professionals and 14k newsletter subscribers

Stay Ahead in Nanotech

Monthly insights, breakthroughs, and opportunities delivered to 14,000+ industry professionals.

Thank you registering!

More News

Join the Global Nanotechnology Network

Connect with 220k+ nanotech professionals across our network and grow your business visibility

FOR COMPANIES

  • Free basic profile

  • Showcase your products

  • Connect with global buyers

  • Premium options available

STAY INFORMED

  • Monthly industry insights

  • Latest breakthroughs & trends

  • New products & innovations

  • Exclusive opportunities

bottom of page