Army scientists create quantum sensor that covers entire radio frequency spectrum


Rydberg atoms are optically excited to Rydberg states that detect incoming radio frequency fields in this artist's interpretation. @ U.S. Army

A quantum sensor could give soldiers a way to detect communication signals over the entire radio frequency spectrum, from 0 to 100 GHz, said researchers from the Army.

Such wide spectral coverage by a single antenna is impossible with a traditional receiver system, and would require multiple systems of individual antennas, amplifiers and other components.

In 2018, Army scientists were the first in the world to create a quantum receiver that uses highly excited, super-sensitive atoms--known as Rydberg atoms--to detect communications signals, said David Meyer, a scientist at the U.S. Army Combat Capabilities Development Command's Army Research Laboratory. The researchers calculated the receiver's channel capacity, or rate of data transmission, based on fundamental principles, and then achieved that performance experimentally in their lab--improving on other groups' results by orders of magnitude, Meyer said.

"These new sensors can be very small and virtually undetectable, giving Soldiers a disruptive advantage," Meyer said. "Rydberg-atom based sensors have only recently been considered for general electric field sensing applications, including as a communications receiver. While Rydberg atoms are known to be broadly sensitive, a quantitative description of the sensitivity over the entire operational range has never been done."

To assess potential applications, Army scientists conducted an analysis of the Rydberg sensor's sensitivity to oscillating electric fields over an enormous range of frequencies--from 0 to 1012 Hertz. The results show that the Rydberg sensor can reliably detect signals over the entire spectrum and compare favorably with other established electric field sensor technologies, such as electro-optic crystals and dipole antenna-coupled passive electronics.

"Quantum mechanics allows us to know the sensor calibration and ultimate performance to a very high degree, and it's identical for every sensor," Meyer said. "This result is an important step in determining how this system could be used in the field."

This work supports the Army's modernization priorities in next-generation computer networks and assured position, navigation and timing, as it could potentially influence novel communications concepts or approaches to detection of RF signals for geolocation.

In the future, Army scientists will investigate methods to continue to improve the sensitivity to detect even weaker signals and expand detection protocols for more complicated waveforms.

Assessment of Rydberg atoms for wideband electric field sensing

David H Meyer, Zachary A Castillo, Kevin C Cox and Paul D Kunz

Journal of Physics B: Atomic, Molecular and Optical Physics (2020) Volume 53, Number 3

DOI: 10.1088/1361-6455/ab6051

U.S. Army CCDC Army Research Laboratory


Learn more about the Nanotechnology World Association (NWA):

Who we are | Founding Members | Board of Directors | Memberships |

News | Careers | Events

 

STAY CURRENT WITH THE NWA NEWSLETTER DELIVERED TO YOUR INBOX.

FOUNDING MEMBERS

Lighting the way to selective membrane imaging

Novel magnetic spray transforms objects into millirobots for biomedical applications

A DNA-based nanogel for targeted chemotherapy

A pressure sensor at your fingertips

A filter for environmental remediation

Predicting forces between oddly shaped nanoparticles

One-way street for electrons