top of page
NEWSROOM


Rydberg-atom detector conquers a new spectral frontier
A team from the Faculty of Physics and the Centre for Quantum Optical Technologies at the Centre of New Technologies, University of Warsaw has developed a new method for measuring elusive terahertz signals using a "quantum antenna." The authors of the work utilized a novel setup for radio wave detection with Rydberg atoms to not only detect but also precisely calibrate a so-called frequency comb in the terahertz band. This band was until recently a white spot in the electroma
Dec 8, 20254 min read


Building bridges between strong-field physics and quantum optics
For a long time, the two areas of strong-field physics and quantum optics were considered independent areas of physics research without any significant overlaps. Whilst strong-field physics focuses on the behavior of material, such as atomic gases, in intense light fields, quantum optics focuses on researching special quantum properties of light that cannot be described within the framework of classical physics. Strong-field physics requires intense laser rays, in other words
Nov 24, 20254 min read


Highly efficient and compact
Lasers that emit extremely short light pulses are highly precise and are used in manufacturing, medical applications, and research. The problem: efficient short-pulse lasers require a lot of space and are expensive. Researchers at the University of Stuttgart have developed a new system in cooperation with Stuttgart Instruments GmbH. It is more than twice as efficient as previous systems, fits in the palm of a hand, and is highly versatile. The scientists describe their approa
Nov 11, 20253 min read


Magnetized plasmas offer a new handle on nanomaterial design
Imagine a cloud that shines like a neon sign, but instead of raindrops it contains countless microscopic dust grains floating in midair. This is a dusty plasma, a bizarre state of matter found both in deep space and in the laboratory. In a new study, published this week in Physical Review E, Auburn University physicists report that even weak magnetic fields can reshape how these dusty plasmas behave—slowing down or speeding up the growth of nanoparticles suspended inside. The
Oct 22, 20252 min read


When symmetry breaks in tiny spaces
In physics, some of the most striking phenomena emerge when perfect symmetry shatters. This principle, known as spontaneous symmetry breaking, underlies everything from the Higgs mechanism that gives particles mass to the twist of DNA and the handedness of seashells. Researchers have now uncovered a particularly fascinating stage for this phenomenon in liquid crystals—soft materials that flow like liquids yet maintain molecular order like solids.
Sep 18, 20253 min read


Researchers discover universal laws of quantum entanglement across all dimensions
A research group led by Kusuki, The University of Tokyo Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU, WPI) and the California Institute of Technology (Caltech) Professor Hirosi Ooguri, and Caltech researcher Sridip Pal, has shown the universal features of quantum entanglement structures in higher dimensions by applying theoretical techniques developed in the field of particle physics to quantum information theory. The research team focused on th
Aug 6, 20253 min read
bottom of page