park_nano_research_grant.jpg

Mass-produced microscopic sensors see the light


This collection of OWICs is barely visible to the naked eye. @ Alejandro Cortese

Cornell University researchers who build nanoscale electronics have developed microsensors so tiny, they can fit 30,000 on one side of a penny. They are equipped with an integrated circuit, solar cells and light-emitting diodes (LEDs) that enable them to harness light for power and communication. And because they are mass fabricated, with up to 1 million sitting on an 8-inch wafer, each device costs a fraction of that same penny. The sensors can be used to measure inputs like voltage and temperature in hard-to-reach environments, such as inside living tissue and microfluidic systems. For example, when rigged with a neural sensor, they would be able to noninvasively record nerve signals in the body and transmit findings by blinking a coded signal via the LED. As a proof of concept, the team successfully embedded a sensor in brain tissue and wirelessly relayed the results. The team's paper, "Microscopic Sensors Using Optical Wireless Integrated Circuits," published in PNAS. The collaboration is led by Paul McEuen, professor of physical science, and Alyosha Molnar, associate professor of electrical and computer engineering. Working with the paper's lead author, Alejandro Cortese, a Cornell Presidential Postdoctoral Fellow, they devised a platform for parallel production of their optical wireless integrated circuits (OWICs) - microsensors the size of 100 microns (a micron is one-millionth of a meter), mere specks to the human eye. The OWICS are essentially paramecium-size smartphones that can be specialized with apps. But rather than rely on cumbersome radio frequency technology, as cellphones do, the researchers looked to light as a potential power source and communication medium. McEuen, Molnar and Cortese have launched their own company, OWiC Technologies, to commercialize the microsensors. A patent application has been filed through the Center for Technology Licensing. The first application is the creation of e-tags that can be attached to products to help identify them. The tiny, low-cost OWICs could potentially spawn generations of microsensors that use less power while tracking more complicated phenomena. Microscopic sensors using optical wireless integrated circuits Alejandro J. Cortese, Conrad L. Smart, Tianyu Wang, Michael F. Reynolds, Samantha L. Norris, Yanxin Ji, Sunwoo Lee, Aaron Mok, Chunyan Wu, Fei Xia, Nathan I. Ellis, Alyosha C. Molnar, Chris Xu, and Paul L. McEuen PNAS (2020) DOI: 10.1073/pnas.1919677117 Contact information: Paul McEuen Cornell Professor of Physical Science plm23@cornell.edu Phone: 607-255-5193 McEuen Group Alyosha Christopher Molnar Cornell Associate Professor of Electrical and Computer Engineering am699@cornell.edu Phone: 607-254-8257 Molnar Group Chris Xu Cornell Professor of Applied and Engineering Physics cx10@cornell.edu Phone: 607-255-1460 Xu Group Cornell University

 

STAY CURRENT WITH THE NWA NEWSLETTER DELIVERED TO YOUR INBOX.

FOUNDING MEMBERS

Efficient valves for electron spins

Quantum materials quest could benefit from graphene that buckles

Magnesium alloy with eddy-thermal effect for novel tumor magnetic hyperthermia therapy

From nanocellulose to gold

ScanCut project completed: laser cutting enables more intricate plug connector designs

Spintronics: Researchers show how to make non-magnetic materials magnetic

May the force be with you: detecting ultrafast light by its force