top of page

Scientists view the “transition state” of a photochemical reaction in real-time

  • Aug 4, 2023
  • 2 min read

Artist’s illustration of the observed photochemical “transition state” structure (center). This state lasts less than one millionth of one millionth of a second. @ Greg Stewart, SLAC National Accelerator Laboratory

The Science In chemical reactions, molecules proceed during their transformation from reactants into reaction products through a critical geometry. In chemistry, geometry refers to the arrangement of atoms in a molecule. Scientists often call critical geometry in reactions a transition state. This state has an almost incomprehensibly short lifetime of less than one millionth of one millionth of a second. Scientists recently captured a critical geometry using the ultra-high speed “electron camera” at SLAC. In combination with quantum simulations of the reaction, this allowed researchers to identify the critical structure as one end of the molecule bending away from the rest of the molecule.


The Impact

Chemists use the reaction investigated in this study, a so-called electrocyclic reaction, because it generates very specific reaction products. These products can be predicted by the Woodward-Hoffmann rules. These rules received the Nobel Prize in chemistry in 1981 and are taught to every organic chemist during their undergraduate education. However, the rules do not give a detailed answer why reactions generate only specific reaction products. The new results help to address this open question. Additionally, they open a path for researchers to create new rules for other types of reactions. This can help make organic chemistry a more powerful tool.


Summary

Electrocyclic reactions are characterized by the simultaneous formation and dissociation of multiple chemical bonds through one critical geometry. In the case of alpha-terpinene, the molecule studied in this project, two double bonds and one single bond are transformed into three double bonds. The synchronization of these processes and the single critical configuration ensure their stereospecificity, a characteristic that makes them an important tool for synthetic chemistry. The stereospecificity can be predicted by the well-known Woodward-Hoffmann rules.


The present study investigated a photochemical (i.e., light-triggered) electrocyclic ring-opening reaction with a combination of ultrafast electron diffraction and simulations of the reaction dynamics in alpha-terpinene. The Woodward-Hoffmann rules predict that the stereospecificity of the reaction in alpha-terpinene is ensured by a rotation of the ends of the emerging chain-like reaction product away from each other in the same clockwise or counter-clockwise direction. The new results suggest that the origins of the stereospecificity do not lie in the exact nature of the motion. Instead, the stereospecificity is determined by the fact that the change from two to three double bonds has largely already happened when the molecule assumes the critical geometry. The single bond dissociation, which leads to the opening of the alpha-terpinene ring, happens later, during the transformation of the molecule from the critical geometry to the reaction products. Reference Rehybridization dynamics into the pericyclic minimum of an electrocyclic reaction imaged in real-time

Liu, Y.; Sanchez, D. M.; Ware, M. R.; Champenois, E. G.; Yang, J.; Nunes, J. P. F.; Attar, A.; Centurion, M.; Cryan, J. P.; Forbes, R.; Hegazy, K.; Hoffmann, M. C.; Ji, F.; Lin, M. -F.; Luo, D.; Saha, S. K.; Shen, X.; Wang, X. J.; Martínez, T. J.; Wolf, T. J. A.


Comments


FREE LISTING

Get Found by Gobal Nanotech Buyer

Join 2,000+ companies in our directory. Claim your profile in 2 minutes.

Reach 220k+ professionals

Instant credibility boost

Start free, upgrade anytime

List your Nanotech Products

Showcase your innovations to our 220k+ network of industry professionals and 14k newsletter subscribers

Stay Ahead in Nanotech

Monthly insights, breakthroughs, and opportunities delivered to 14,000+ industry professionals.

Thank you registering!

More News

Join the Global Nanotechnology Network

Connect with 220k+ nanotech professionals across our network and grow your business visibility

FOR COMPANIES

  • Free basic profile

  • Showcase your products

  • Connect with global buyers

  • Premium options available

STAY INFORMED

  • Monthly industry insights

  • Latest breakthroughs & trends

  • New products & innovations

  • Exclusive opportunities

bottom of page