park_nano_research_grant.jpg

Wearable AC


One day, soldiers could cool down on the military battlefield -- preventing heat stroke or exhaustion -- by using "wearable air conditioning," an on-skin device designed by engineers at the University of Missouri. The device includes numerous human health care applications such as the ability to monitor blood pressure, electrical activity of the heart and the level of skin hydration.


The findings are detailed in the journal Proceedings of the National Academy of Sciences.


Unlike similar products in use today or other related concepts, this breathable and waterproof device can deliver personal air conditioning to a human body through a process called passive cooling. Passive cooling does not utilize electricity, such as a fan or pump, which researchers believe allows for minimal discomfort to the user.


"Our device can reflect sunlight away from the human body to minimize heat absorption, while simultaneously allowing the body to dissipate body heat, thereby allowing us to achieve around 11 degrees Fahrenheit of cooling to the human body during the daytime hours," said corresponding author Zheng Yan, an assistant professor in the College of Engineering. "We believe this is one of the first demonstrations of this capability in the emerging field of on-skin electronics."


Currently, the device is a small wired patch, and researchers say it will take one to two years to design a wireless version. They also hope to one day take their technology and apply it to 'smart' clothing.


"Eventually, we would like to take this technology and apply it to the development of smart textiles," Yan said. "That would allow for the device's cooling capabilities to be delivered across the whole body. Right now, the cooling is only concentrated in a specific area where the patch is located. We believe this could potentially help reduce electricity usage and also help with global warming."


Multiscale porous elastomer substrates for multifunctional on-skin electronics with passive-cooling capabilities

Yadong Xu, Bohan Sun, Yun Ling, Qihui Fei, Zanyu Chen, Xiaopeng Li, Peijun Guo, Nari Jeon, Shivam Goswami, Yixuan Liao, Shinghua Ding, Qingsong Yu, Jian Lin, Guoliang Huang, and Zheng Yan

PNAS January 7, 2020 117 (1) 205-213

DOI: 10.1073/pnas.1917762116


Contact information:

Zheng Yan

MU Assistant Professor of Mechanical and Aerospace Engineering; Biomedical, Biological and Chemical Engineering

yanzheng@missouri.edu

Phone: 573.884.0562

Zheng Yan Group - Soft Materials and Biointegrated Electronics Lab


University of Missouri (MU)

 

STAY CURRENT WITH THE NWA NEWSLETTER DELIVERED TO YOUR INBOX.

FOUNDING MEMBERS

Efficient valves for electron spins

Quantum materials quest could benefit from graphene that buckles

Magnesium alloy with eddy-thermal effect for novel tumor magnetic hyperthermia therapy

From nanocellulose to gold

ScanCut project completed: laser cutting enables more intricate plug connector designs

Spintronics: Researchers show how to make non-magnetic materials magnetic

May the force be with you: detecting ultrafast light by its force