top of page
NEWS - PHOTONICS
AI | BUSINESS | CHEMISTRY | COMPUTING | ELECTRONICS | ENERGY | ENGINEERING | LIFE SCIENCE | MATERIAL SCIENCE | METROLOGY | PHOTONICS | PHYSICS | QUANTUM TECH | ROBOTICS | SEMICONDUCTOR


Manufacturing the world's tiniest light-emitting diodes
On the one hand, pixels ranging in size from 100 to 200 nanometres form the foundation for ultra-high-resolution screens that could display razor-sharp images in glasses worn close to the eye, for example. In order to illustrate this, Shih's team of researchers displayed the ETH Zurich logo. This ETH logo consists of 2,800 nano-OLEDs and is similar in size to a human cell, with each of its pixels measuring around 200 nanometres (0.2 micrometres). The smallest pixels developed


From light to logic
The group demonstrated that shining three self-trapped light beams into a specially engineered hydrogel can execute a NAND logic operation, one of the most fundamental building blocks of computing. Because all other digital logic gates can be built from NAND, the achievement establishes soft, photoresponsive materials as a realistic platform for autonomous, computation-capable systems.


Scientists make dark exciton states shine, unlocking new frontiers for nanotechnology
A research team at the City University of New York and the University of Texas at Austin has discovered a way to make previously hidden states of light, known as dark excitons, shine brightly, and control their emission at the nanoscale. Their findings, published today in Nature Photonics, open the door to faster, smaller, and more energy-efficient technologies. Dark excitons are exotic light-matter states in atomically thin semiconductors that typically remain invisible beca


Scientists discover breakthrough materials to enhance light-based computers
Scientists at New York University report the discovery of “gyromorphs”—a material that combines the seemingly incompatible properties of liquids and crystals and that performs better than any other known structure in blocking light from all incoming angles. The breakthrough, described in the journal Physical Review Letters, marks an innovative way to control optical properties and to potentially advance the capabilities of light-based computers.


Two-step excitation unlocks and steers exotic nanolight
In the quest for ultra-compact, light-based circuits, scientists are turning to polaritons—hybrid modes formed from the coupling of light with optically active material excitations such as plasmons or phonons. These remarkable quasiparticles can squeeze light into spaces far smaller than its natural wavelength, overcoming the conventional limits of far-field optics. However, exciting most confined variants - higher-order polaritons - has been a major challenge, as they demand


USC team demonstrates first optical device based on “optical thermodynamics”
A team of researchers at the Ming Hsieh Department of Electrical and Computer Engineering has created a new breakthrough in photonics: the design of the first optical device that follows the emerging framework of optical thermodynamics. The work, reported in Nature Photonics, introduces a fundamentally new way of routing light in nonlinear systems—meaning systems that do not require switches, external control, or digital addressing. Instead, light naturally finds its way thro


Missing harmonic dynamics in Generalized Snell’s Law: revealing full-channel characteristics of gradient metasurfaces
Since the Generalized Snell's Law (GSL) was proposed, planar metasurfaces have achieved remarkable progress in optical and electromagnetic wavefront manipulation by leveraging phase gradients. The Generalized Snell’s Law primarily focuses on the influence of phase gradients on the fundamental wave components while neglecting higher-order spatial harmonics generated by inter-element coupling and periodicity, often limiting metasurfaces to "single-channel" devices and constrain


Uniting the Light Spectrum on a Chip
Caltech team led by Alireza Marandi, a professor of electrical engineering and applied physics at Caltech, has created a tiny device capable of producing an unusually wide range of laser-light frequencies with ultra-high efficiency—all on a microchip.


New laser “comb” can enable rapid identification of chemicals with extreme precision
Researchers have demonstrated a compact, fully integrated device that uses a carefully crafted mirror to generate a stable frequency comb with very broad bandwidth. The mirror they developed, along with an on-chip measurement platform, offers the scalability and flexibility needed for mass-producible remote sensors and portable spectrometers. This development could enable more accurate environmental monitors that can identify multiple harmful chemicals from trace gases in the


Light reveals secrets encoded in chiral metasurfaces
By leveraging the concept of chirality, or the difference of a shape from its mirror image, EPFL scientists have engineered an optical metasurface that controls light to yield a simple and versatile technique for secure encryption, sensing, and computing.


Acoustic trick mirrors quantum paradox: Anti-Klein tunneling confirmed
In a groundbreaking experiment, researchers from Tianjin University, Zhejiang University, Northeastern University and University of Science and Technology of China have directly observed anti-Klein tunneling (AKT)—a quantum paradox where chiral particles are entirely reflected instead of passing through an energy barrier. This long-sought quantum-like behavior is realized not with electrons, but with engineered sound waves in a custom-designed bilayer phononic crystal.


Photonic processor could streamline 6G wireless signal processing
MIT researchers have developed a novel AI hardware accelerator that is specifically designed for wireless signal processing. Their optical processor performs machine-learning computations at the speed of light, classifying wireless signals in a matter of nanoseconds.
bottom of page
