top of page

ARTICLE

A nanophenomenon that triggers the bone-repair process



@ ICN2

Researchers at the Institut Català de Nanociència i Nanotecnologia have resolved one of the great unknowns in bone self-repair: how the cells responsible for forming new bone tissue are called into action. Their work reveals the role of an electromechanical phenomenon at the nanoscale, flexoelectricity, as a possible mechanism for stimulating the cell response and guiding it throughout the fracture repair process.

Researchers of the ICN2 Oxide Nanophysics Group led by ICREA Prof. Gustau Catalan have discovered that bone too is flexoelectric, positing the possible role of flexoelectricity in the regeneration of bone tissue in and around the kind of microfractures incurred in bones on a daily basis. Published today in Advanced Materials with lead author Fabián Vásquez-Sancho, their findings have potential implications for the prosthetics industry and the development of biomimetic self-healing materials.

Bones were already known to generate electricity under pressure, stimulating self-repair and remodelling. First reported in the late fifties, this was initially attributed to the piezoelectricity of bone’s organic component, collagen. However, studies have since observed markers of bone repair in the absence of collagen, suggesting that other effects are at play. In this work ICN2 researchers have revealed just such an effect: the flexoelectricity of bone’s mineral component.


Prof. Gustau Catalan

Flexoelectricity is a property of some materials that causes them to emit a small voltage upon application of a non-uniform pressure. This response is extremely localised, becoming weaker as you move away from the point of maximum stress. In microfractures it is localised to the leading edge or tip of the crack, an atomically small site that, by definition, concentrates the maximum strain a material is able to withstand before full rupture. The result is a flexoelectric field of a magnitude that, at this local level, eclipses any background collagen piezoelectric effect.

By studying strain gradients in bones and pure bone mineral (hydroxyapatite), the researchers have been able to calculate the precise magnitude of this electric field. Their findings indicate that it is sufficiently large within the required 50 microns of the crack tip to be sensed by the cells responsible for bone repair, directly implicating flexoelectricity in this process.

Furthermore, since the cells responsible for synthesising new bone tissue (osteoblasts) are known to attach close to the tip, it would appear that the electric field distribution signals this

point as the centre of damage, becoming a moving beacon for repair efforts as the crack is healed.

These results hold promise for the prosthetics industry, where new materials that reproduce or amplify this flexoelectric effect could be used to guide tissue regeneration and enable a more successful assimilation of implants.

The study was funded by an European Research Council grant, and has been led from the ICN2 with the collaboration of the Materials Science and Engineering Research Centre at the Universidad de Costa Rica (Costa Rica), the Computational Methods and Numerical Analysis Laboratory (LaCàN) at the Universitat Politècnica de Catalunya (Spain), and the École Politechnique Federale de Lausanne (EPFL, Switzerland).

A press conference with local and national media was held today at the Barcelona Institute of Science and Technology, of which the ICN2 is among the founding members.

Article reference:

F. Vasquez-Sancho, A. Abdollahi, D. Damjanovic, G. Catalan. Flexoelectricity in bones. Advanced Materials, 2018. DOI: adma.201705316

For more information:

Catalan Institute of Nanoscience and Nanotechnology (ICN2) Marketing and Communication Department Àlex Argemí, Head of Marketing and Communication alex.argemi@icn2.cat; +34 937 372 607; +34 635 861 543 Rachel Spencer, Science Writer and Communications Officer rachel.spencer@icn2.cat; +34 937 372 671

  • RSS

Subscribe to our monthly Newsletter

Get the nanotech news that matters directly in your inbox.

Thank you registering!

Follow us on social media

  • LinkedIn
  • X
  • Youtube
  • Tumblr
  • Facebook

May 19, 2024

Osaka, Japan

13th Annual Congress of Nano Science and Technology (Nano S&T-2024)

May 28, 2024

Kuala Lumpur, Malaysia

SEMICON SEA 2024

Jun 3, 2024

Tokyo, Japan

Japan Energy Summit & Exhibition

bottom of page