top of page

Miniscule Mirrored Cavities Connect Quantum Memories

  • Writer: Marine Le Bouar
    Marine Le Bouar
  • Jun 16, 2015
  • 2 min read


cfn-cotlet-lu-englund-nature-communications-large.jpg

New structures could accelerate progress toward faster computing and high-security data transfer across fiber optic networks.

Tiny, nanoscale mirrors were constructed to trap light around atoms inside of diamond crystals, acting like a series of funhouse mirrors. The mirrored cavities in the crystal allow light to bounce back and forth up to 10,000 times, enhancing the normally weak interaction between light and the electronic spin states in the atoms. As a result, a 200-microsecond spin-coherence time – how long the memory encoded in the electron spin state lasts – was produced.

The enhanced interactions between light and atoms and the extended spin-coherence times are essential steps toward realizing real-world quantum memories and, hence, quantum computing systems, which could solve some problems faster than conventional systems. Additionally, these advances could significantly impact the development of high-security, long-distance, cryptographic fiber optic communication networks.

Nanoscale mirrored cavities that trap light around atoms in diamond crystals increase the quantum mechanical interactions between light and electrons in atoms. Such interactions are essential to the creation and the connection of memory for quantum computers. Recent research, performed at the Massachusetts Institute of Technology (MIT) and the Center for Functional Nanomaterials at the U.S. Department of Energy’s Brookhaven National Laboratory, has demonstrated a new process to construct such diamond nanocavities in which memories are encoded inside the electronic spin states of an atomic system, with a memory time exceeding 200 microseconds.

This improvement in the coherence time is more than two orders of magnitude better than previously reported times for cavity-coupled single quantum memories in solid state systems. The fabrication of the optical cavities relied on a new silicon hard-mask fabrication process that applies mature semiconductor fabrication methods for patterning high-quality photonic devices into unconventional substrates.

Source: http://science.energy.gov/bes/highlights/2015/bes-2015-06-b/

 
 
 

Comments


FREE LISTING

Get Found by Gobal Nanotech Buyer

Join 2,000+ companies in our directory. Claim your profile in 2 minutes.

Reach 220k+ professionals

Instant credibility boost

Start free, upgrade anytime

List your Nanotech Products

Showcase your innovations to our 220k+ network of industry professionals and 14k newsletter subscribers

Stay Ahead in Nanotech

Monthly insights, breakthroughs, and opportunities delivered to 14,000+ industry professionals.

Thank you registering!

More News

Join the Global Nanotechnology Network

Connect with 220k+ nanotech professionals across our network and grow your business visibility

FOR COMPANIES

  • Free basic profile

  • Showcase your products

  • Connect with global buyers

  • Premium options available

STAY INFORMED

  • Monthly industry insights

  • Latest breakthroughs & trends

  • New products & innovations

  • Exclusive opportunities

bottom of page