top of page

ARTICLE

Artificial muscles bloom, dance, and wave




Researchers from KAIST have developed an ultrathin, artificial muscle for soft robotics. The advancement, recently reported in the journal Science Robotics, was demonstrated with a robotic blooming flower brooch, dancing robotic butterflies and fluttering tree leaves on a kinetic art piece.


The robotic equivalent of a muscle that can move is called an actuator. The actuator expands, contracts or rotates like muscle fibers using a stimulus such as electricity. Engineers around the world are striving to develop more dynamic actuators that respond quickly, can bend without breaking, and are very durable. Soft, robotic muscles could have a wide variety of applications, from wearable electronics to advanced prosthetics.


The team from KAIST's Creative Research Initiative Center for Functionally Antagonistic Nano-Engineering developed a very thin, responsive, flexible and durable artificial muscle. The actuator looks like a skinny strip of paper about an inch long. They used a particular type of material called MXene, which is class of compounds that have layers only a few atoms thick.


Their chosen MXene material (T3C2Tx) is made of thin layers of titanium and carbon compounds. It was not flexible by itself; sheets of material would flake off the actuator when bent in a loop. That changed when the MXene was "ionically cross-linked" -- connected through an ionic bond -- to a synthetic polymer. The combination of materials made the actuator flexible, while still maintaining strength and conductivity, which is critical for movements driven by electricity.


Their particular combination performed better than others reported. Their actuator responded very quickly to low voltage, and lasted for more than five hours moving continuously.



To prove the tiny robotic muscle works, the team incorporated the actuator into wearable art: an origami-inspired brooch mimics how a narcissus flower unfolds its petals when a small amount of electricity is applied. They also designed robotic butterflies that move their wings up and down, and made the leaves of a tree sculpture flutter.


"Wearable robotics and kinetic art demonstrate how robotic muscles can have fun and beautiful applications," said Il-Kwon Oh, lead paper author and professor of mechanical engineering. "It also shows the enormous potential for small, artificial muscles for a variety of uses, such as haptic feedback systems and active biomedical devices."


The team next plans to investigate more practical applications of MXene-based soft actuators and other engineering applications of MXene 2D nanomaterials.


MXene artificial muscles based on ionically cross-linked Ti3C2Tx electrode for kinetic soft robotics

Sima Umrao, Rassoul Tabassian, Jaehwan Kim, Van Hiep Nguyen, Qitao Zhou, Sanghee Nam and Il-Kwon Oh

Science Robotics 21 Aug 2019: Vol. 4, Issue 33


Contact information:

Il-Kwon Oh

Professor of mechanical engineering at KAIST

Phone: (+82)42-350-1520

KAIST's ACTIVE Lab


Korea Advanced Institute of Science and Technology (KAIST)

Comments


  • RSS

Subscribe to our monthly Newsletter

Get the nanotech news that matters directly in your inbox.

Thank you registering!

Follow us on social media

  • LinkedIn
  • X
  • Youtube
  • Tumblr
  • Facebook

Jun 29, 2024

Thessaloniki, Greece

NANOTEXNOLOGY 2024

Jun 30, 2024

Melbourne VIC, Australia

29th Opto-Electronics and Communications Conference 2024 (OECC2024)

Jul 1, 2024

Kuala Lumpur, Malaysia

ICMRN-2024

bottom of page