top of page
NEWSROOM


Scientists make dark exciton states shine, unlocking new frontiers for nanotechnology
A research team at the City University of New York and the University of Texas at Austin has discovered a way to make previously hidden states of light, known as dark excitons, shine brightly, and control their emission at the nanoscale. Their findings, published today in Nature Photonics, open the door to faster, smaller, and more energy-efficient technologies. Dark excitons are exotic light-matter states in atomically thin semiconductors that typically remain invisible beca
Nov 13, 20252 min read


Scientists discover breakthrough materials to enhance light-based computers
Scientists at New York University report the discovery of “gyromorphs”—a material that combines the seemingly incompatible properties of liquids and crystals and that performs better than any other known structure in blocking light from all incoming angles. The breakthrough, described in the journal Physical Review Letters, marks an innovative way to control optical properties and to potentially advance the capabilities of light-based computers.
Nov 10, 20253 min read


Two-step excitation unlocks and steers exotic nanolight
In the quest for ultra-compact, light-based circuits, scientists are turning to polaritons—hybrid modes formed from the coupling of light with optically active material excitations such as plasmons or phonons. These remarkable quasiparticles can squeeze light into spaces far smaller than its natural wavelength, overcoming the conventional limits of far-field optics. However, exciting most confined variants - higher-order polaritons - has been a major challenge, as they demand
Oct 8, 20253 min read


USC team demonstrates first optical device based on “optical thermodynamics”
A team of researchers at the Ming Hsieh Department of Electrical and Computer Engineering has created a new breakthrough in photonics: the design of the first optical device that follows the emerging framework of optical thermodynamics. The work, reported in Nature Photonics, introduces a fundamentally new way of routing light in nonlinear systems—meaning systems that do not require switches, external control, or digital addressing. Instead, light naturally finds its way thro
Oct 8, 20253 min read


Missing harmonic dynamics in Generalized Snell’s Law: revealing full-channel characteristics of gradient metasurfaces
Since the Generalized Snell's Law (GSL) was proposed, planar metasurfaces have achieved remarkable progress in optical and electromagnetic wavefront manipulation by leveraging phase gradients. The Generalized Snell’s Law primarily focuses on the influence of phase gradients on the fundamental wave components while neglecting higher-order spatial harmonics generated by inter-element coupling and periodicity, often limiting metasurfaces to "single-channel" devices and constrain
Sep 24, 20253 min read


Uniting the Light Spectrum on a Chip
Caltech team led by Alireza Marandi, a professor of electrical engineering and applied physics at Caltech, has created a tiny device capable of producing an unusually wide range of laser-light frequencies with ultra-high efficiency—all on a microchip.
Sep 18, 20254 min read
bottom of page